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Abstract

A new method is presented for obtaining accu-
rate solutions to time harmonic Maxwell’s equa-
tions when sharp corners are present. It uses
a new formulation of the impedance boundary
condition which includes the scalar potential in
such a way that boundary conditions are satis-
fied exactly.

1 Summary

Scalar and vector potential methods [1, 2, 3, 4,
5] have been recognized for some time as accu-
rate and rigorous ways of obtaining divergence-
free solutions to Maxwell’s time harmonic
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equations utilizing nodal based finite elements.
These methods have important advantages over
edge element [6] based methods in that they typ-
ically require lower sampling rates, resulting in
smaller matrices, and can be more easily solved
with preconditioned iterative methods, a neces-
sity for large problems.

However, they have suffered from an almost
total loss of accuracy whenever sharp metallic
corners are present in the model. While applica-
tions such as microwave hyperthermia treatment
planning and geophysical modeling, which have
fruitfully used these methods for some time, do
not often require such capabilities, this severely
limits their utility in modeling microwave de-
vices and in RCS applications.

Attempts to eliminate this errant behavior
have primarily involved hybrid nodal/edge ele-

0-7803-4603-6/97/$5.00 (c) IEEE



ments [7, 8] and have met with limited success.
The use of these hybrid elements was motivated
by the observation that the vector potential alone
cannot satisfy the proper boundary conditions
when expressed solely with nodal element ba-
sis functions. The addition of correctly chosen
edge element basis functions, though not rigor-
ous, did improve the results.

We present a new treatment for this phenom-
ena which requires only second order nodal ba-
sis functions. It incorporates both the scalar and
vector potentials into an impedance boundary
condition (SV-IBC) that permits the boundary
conditions on the electric field to be satisfied ex-
actly.

2 SV-IBC

When scalar and vector potentials

E=wA- Vo, )
are introduced into the time harmonic
Maxwell’s equations a redundancy is cre-
ated. For if (A, ¢) and (B, ) are two such
potential pairs whose electric field solves
the same electromagnetic problem, then
A= B+ LV(¢— ). Thatis, ¢ and ¢ could
differ by a constant without affecting A BorE
and ¢ and ¢ could be arbitrary without affecting
E.

Thus, additional boundary conditions are re-
quired to obtain a unique solution. These con-
ditions may be viewed as necessary conditions
to uniquely determine the scalar potential, forc-
ing uniqueness on the vector potential. Typical
additional boundary conditions [1, 2, 3] involve

specifying ¢ = 0 or d¢/0n = 0 since ¢ satisfies
a scalar Helmholtz or Poisson equation.

For perfect electric and magnetic conductors,
the proper conditions are

i x (wA-Ve) = 0, )
V-A-—weup = 0, (3)
¢ = 0, 4)
and
A X —l—V x A = 0, 5)
I

i-e(wA-Ve) = 0, (6)

o
n 0, (7

respectively. Note that both conditions require
the explicit use of the normal to the surface, a
quantity undefined at a sharp corner. This is the
root of the problems that nodal methods have
with sharp PEC corners.

Consider the PEC condition (2,3,4). Since
¢ = 0,n x V¢ = 0 and thus the vector po-
tential A must be normal to the surface. This
is an essential boundary condition and is nor-
mally enforced at each node along the surface.
If the surface is smooth and not highly curved
(relative to element size) A will also be approx-
imately normal everywhere on the PEC. Using
this condition for objects with corners, with an
“average” normal at corners, leads to complete
loss of accuracy [8].

Using an impedance boundary condition with
small impedance and ¢ = 0, which is enforced
only weakly on the surface, avoids explicit use
of the non-existant normal at the corner, but
does no better in regards to accuracy [8]. This
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is due to the fact that the nodal basis represen-
tation for A (and thus E) in this case does not
permit the PEC boundary conditions to be even
approximately satisfied on both sides of a cor-
ner.

However, if the scalar potential is not set to
zero on the PEC surface, it provides additional
degrees of freedom with which to force tan-
gential E to vanish 2. This is the idea behind
the SV-IBC. If in addition, the vector potential
is unconstrained at corner nodes and the mid-
side nodes on the PEC adjacent to those cor-
ner nodes, and ¢ is set to zero at an arbitrary
point on the PEC, then the SV-IBC with small
impedance forces the PEC conditions to be sat-
isfied exactly on the surface and results in a sta-
ble non-singular system. This has been veri-
fied mathematically and numerically with eigen-
value analysis of the resulting finite element ma-
trices.

Numerical examples were run for a 2-D PEC
body with a sharp corner. Comparisons were
made between a scalar and vector potential for-
mulation for (E,, E,) and the curl of a scalar
formulation for H,. The results at centroids
of the finite elements are indistinguishable from
one another, showing only a few percent RMS
error. The behavior of the scalar and vector po-
tential on the PEC near a corner is the most im-
pressive.

Figure 1 shows the vector potential near a cor-
ner of the body. Note that it does not (and can-
not) be normal on both sides of the corner. Fig-
ure 2 shows the corresponding plot of V¢, while
Fig. 3 shows the resulting electric field. Note
how the electric field is perfectly normal on both
sides of the corner.

Similar results have been obtained with both

Figure 1: Vector Potential: wA

electric and magnetic field formulations and
small/large/intermediate values of impedance,
all producing accurate answers indistinguish-
able from the benchmark results.
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Figure 2: Scalar Potential: —V ¢
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