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Abstract

A new method is presented for obtaining accu-

rate solutions to time harmonic Maxwell’s equa-

tions when sharp corners are present. It uses

a new formulation of the impedance boundary

condition which includes the scalar potential in

such a way that boundary conditions are satis-

fied exactly.

1 Summary

Scalar and vector potential methods [1, 2, 3,4,

5] have been recognized for some time as accu-

rate and rigorous ways of obtaining divergence-

free solutions to Maxwell’s time harmonic
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equations utilizing nodal based finite elements.

These methods have important advantages over

edge element [6] based methods in that they typ-

ically require lower sampling rates, resulting in

smaller matrices, and can be more easily solved

with preconditioned iterative methods, a neces-

sity for large problems.

However, they have suffered from an almost

total loss of accuracy whenever sharp metallic

corners are present in the model. While applica-

tions such as microwave hyperthermia treatment

planning and geophysical modeling, which have

fruitfully used these methods for some time, do

not often require such capabilities, this severely

limits their utility in modeling microwave de-

vices and in RCS applications.

Attempts to eliminate this errant behavior

have primarily involved hybrid nodal/edge ele-
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ments [7, 8] and have met with limited success.

The use of these hybrid elements was motivated

by the observation that the vector potential alone

cannot satisfy the proper boundary conditions

when expressed solely with nodal element ba-

sis functions. The addition of correctly chosen

edge element basis functions, though not rigor-

ous, did improve the results,

We present a new treatment for this phenom-

ena which requires only second order nodal ba-

sis functions. It incorporates both the scalar and

vector potentials into an impedance boundary

condition (SV-IBC) that permits the boundary

conditions on the electric field to be satisfied ex-

actly.

2 SV-IBC

When scalar and vector potentials

E = ZWA – u~, (1)

are introduced into the time harmonic

Maxwell’s equations a redundancy is cre-

ated. For if (~, ~) and (~,+) are two such

potential pairs whose electric field solves

the same electromagnetic problem, then

~ = ~ + ~V(# – @). That is, @and @ could

differ by a constant without affecting ~, ~ or ~

and @and@ could be arbitrary without affecting

z.

Thus, additional boundary conditions are re-

quired to obtain a unique solution, These con-

ditions may be viewed as necessary conditions

to uniquely determine the scalar potential, forc-

ing uniqueness on the vector potential. Typical

additional boundary conditions [1, 2, 3] involve

specifying ~ = Oor d~/dn = Osince @satisfies

a scalar Helmholtz or Poisson equation.

For perfect electric and magnetic conductors,

the proper conditions are

ii x (aWA– v~) = o, (2)

v“A–zwqL4 = o, (3)

@=o, (4)

and

fixlvxz = o, (5)
P

?L” C(%WX’-V4) == o, (6)

respectively. Note that both conditions require

the explicit use of the normal to the surface, a

quantity undefined at a sharp corner. This is the

root of the problems that nodal methods have

with sharp PEC corners.

Consider the PEC condition (2,3,4). Since

@ = O,~fi x V# = O and thus the vector po-

tential A must be normal to the surface. This

is an essential boundary condition and is nor-

mally enforced at each node along the surface.

If the surface is smooth a~d not highly curved

(relative to element size) A will also be approx-

imately normal everywhere on the PEC. Using

this condition for objects with corners, with an

“average” normal at corners, leads to complete

loss of accuracy [8].

Using an impedance boundary condition with

small impedance and @ = O, which is enforced

only weakly on the surface, avoids explicit use

of the non-existant normal at the corner, but

does no better in regards to accuracy [8]. This
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is due to the fact that the nodal basis represen-

tation for ~ (and thus @ in this case does not

permit the PEC boundary conditions to be even

approximately satisfied on both sides of a cor-

ner.

However, if the scalar potential is not set to

zero on the PEC surface, it provides additional

degrees of freedom with which to force tan-

gential ~ to vanish 2. This is the idea behind

the SV-IBC. If in addition, the vector potential

is unconstrained at corner nodes and the mid-

side nodes on the PEC adjacent to those cor-

ner nodes, and # is set to zero at an arbitrary

point on the PEC, then the SV-IBC with small

impedance forces the PEC conditions to be sat-

isfied exactly on the surface and results in a sta-

ble non-singular system. This has been veri-

fied mathematically and numerically with eigen-

value analysis of the resulting finite element ma-

trices.

Numerical examples were run for a 2-D PEC

body with a sharp corner. Comparisons were

made between a scalar and vector potential for-

mulation for (13Z, l?y) and the curl of a scalar

formulation for Hz. The results at centroids

of the finite elements are indistinguishable from

one another, showing only a few percent RMS

error. The behavior of the scalar and vector po-

tential on the PEC near a corner is the most im-

pressive.

Figure 1 shows the vector potential near a cor-

ner of the body. Note that it does not (and can-

not) be normal on both sides of the corner. Fig-

ure 2 shows the corresponding plot of V@, while

Fig. 3 shows the resulting electric field. Note

how the electric field is perfectly normal on both

sides of the corner.

Similar results have been obtained with both
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Figure 1: Vector Potential: zwi

electric and magnetic field formulations and

small/large/intermediate values of impedance,

all producing accurate answers indistinguish-

able from the benchmark results.
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